Loewner Chains in the Unit Disk

نویسنده

  • MANUEL D. CONTRERAS
چکیده

In this paper we introduce a general version of the notion of Loewner chains which comes from the new and unified treatment, given in [5], of the radial and chordal variant of the Loewner differential equation, which is of special interest in geometric function theory as well as for various developments it has given rise to, including the famous Schramm-Loewner evolution. In this very general setting, we establish a deep correspondence between these chains and the evolution families introduced in [5]. Among other things, we show that, up to a Riemann map, such a correspondence is one-to-one. In a similar way as in the classical Loewner theory, we also prove that these chains are solutions of a certain partial differential equation which resembles (and includes as a very particular case) the classical Loewner-Kufarev PDE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomially bounded solutions of the Loewner‎ ‎differential equation in several complex variables

‎We determine the‎ ‎form of polynomially bounded solutions to the Loewner differential ‎equation that is satisfied by univalent subordination chains of the‎ ‎form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$‎, ‎where‎ ‎$A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally‎ ‎Lebesgue integrable mapping and satisfying the condition‎ ‎$$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t‎ ‎[A(tau)...

متن کامل

Stochastic Loewner evolution in multiply connected domains

We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compact...

متن کامل

Stochastic Loewner evolution in multiply connected domains Evolution stochastique de Loewner dans des domaines multiple connexes

We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated Teichmüller space. The diffusion stops when it reaches the boundary of the Teichmüller space. We show that for this driving function the family of random growi...

متن کامل

Boundary behaviour of Loewner Chains

In paper found conditions that guarantee that solution of LoewnerKufarev equation maps unit disc onto domain with quasiconformal rectifiable boundary, or it has continuation on closed unit disc, or it’s inverse function has continuation on closure of domain.

متن کامل

Kernel Convergence and Biholomorphic Mappings in Several Complex Variables

We deal with kernel convergence of domains in Cn which are biholomorphically equivalent to the unit ball B. We also prove that there is an equivalence between the convergence on compact sets of biholomorphic mappings on B, which satisfy a growth theorem, and the kernel convergence. Moreover, we obtain certain consequences of this equivalence in the study of Loewner chains and of starlike and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009